
Flux: Those who
forget the past…

@jeremymorrell

Flux: Those who
forget the past…

@jeremymorrell

…are doomed to
debug it

This talk isn’t about React specifically
But we do need to understand one thing about it

react(data)	 →	 UI

what’s special about react is the way I can think about my views
your application data is passed in at the root
and the UI produced is a function of that data
with the same data as input, it will always produce the same output
when the data changes I just re-run the function and React will update the UI

function	 render(data)	 {	
	 	 return	 `	
	 	 	 	 <h1>	
	 	 	 	 	 	 Hola,	 ${data.name}!	
	 	 	 	 </h1>	
	 	 `;	
}	

document.body.innerHTML	 =	 render({	
	 	 name:	 "JSConf	 UY"	 	
});

For the purposes of this talk you can think about React as one giant template function
Every time the data changes, we re-render the template,
and just blow the old view away
This makes it much easier to reason about what’s happening in our view layer

Data

View View

ViewViewView

View

- But then you create a new problem
- Previously our apps looked something like this
- Views living right next to the data they needed

View View

ViewViewView

View

Data

- But with React your data lives outside of this view hierarchy
- I can now easily reason about my view layer
- How can I structure my application so that it’s easy to reason about my data?

View View

ViewViewView

View

Data

- But with React your data lives outside of this view hierarchy
- I can now easily reason about my view layer
- How can I structure my application so that it’s easy to reason about my data?

The solution that's been working for us as we develop our large applications
is an architecture that we call Flux

ViewData

Our ideal view of the world looks like this
Data completely separate from the view
We know that when the data changes we can re-render our view
So let’s add that functionality into our data layer and change the name

ViewStores

Stores hold data, and signal when something has changed
Views subscribe to the stores that contain the data that it needs
Data updates, re-render the view, we know this stuff
This tends to be pretty intuitive for frontend developers

ViewStoresActions

Flux introduces a concept called Actions
less intuitive for most of us
NOT DOM EVENTS

Actions ViewStores

Actions are loosely defined as “things that happen in your app”
Examples:
liking a post on newsfeed,
leaving a comment,
requesting search results,
changing your password

Actions ViewStores

Actions ViewStoresDispatcher

The dispatcher trips people up some times
receives actions and passes them to every registered store
* Every action passes through the dispatcher
* Every action is passed through every store
It handles dependencies between stores, but today we don’t have to think about that

Actions ViewStoresDispatcher

So I click on a button,
that generates an action
the dispatcher passes that to each store
stores update themselves in response
view re-renders

Actions ViewStoresDispatcher

For this talk we can basically ignore the dispatcher and view layers
I want to focus on the interaction between actions and stores
Still abstract, let’s get a concrete example

🏦🏃💶

Bank Account

Bank Account

With every transaction, we update another value called balance

Bank Account
Transaction Amount Balance

With every transaction, we update another value called balance

Bank Account
Transaction Amount Balance

Create Account $0 $0

With every transaction, we update another value called balance

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

With every transaction, we update another value called balance

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

With every transaction, we update another value called balance

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Deposit $100 $250

With every transaction, we update another value called balance

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Deposit $100 $250

$250

With every transaction, we update another value called balance

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Deposit $100 $250

$250

These transactions are how we’re interacting with our bank.
They modify the state our of account.

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Deposit $100 $250

$250
NOTE: If we perform the same transactions, same order,
these results will be the same
The balance is derived data
In flux terms, the transactions on the left are our actions
and the balance on the right is a value that we would track in a store

Actions should be
like newspapers

“Actions should be like newspapers, reporting on something that has happened in the world.”
- Bill Fisher @ Fluent
They might look something like:

{	
	 	 type:	 Actions.WITHDREW_FROM_ACCOUNT,	
	 	 data:	 {	
	 	 	 	 accountID:	 7,	
	 	 	 	 amount:	 50,	
	 	 	 	 date:	 1429468551933,	
	 	 	 	 location:	 {	 ...	 }	
	 	 }	
}

Two fields
type
details about that action

{	
	 	 type:	 Actions.DEPOSITED_INTO_ACCOUNT,	
	 	 data:	 {	
	 	 	 	 accountID:	 7,	
	 	 	 	 amount:	 500,	
	 	 	 	 date:	 1429468551933,	
	 	 	 	 location:	 {	 ...	 }	
	 	 }	
}

note past tense for the action name.
“Something that happened”
So what would our store code look like?

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDREW_FROM_ACCOUNT:	
	 	 	 	 	 	 balance	 -‐=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 case	 Actions.DEPOSITED_INTO_ACCOUNT:	
	 	 	 	 	 	 balance	 +=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

This would be inside a store that tracks account balance

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDREW_FROM_ACCOUNT:	
	 	 	 	 	 	 balance	 -‐=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 case	 Actions.DEPOSITED_INTO_ACCOUNT:	
	 	 	 	 	 	 balance	 +=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

The dispatcher makes sure that every action in the app invokes onDispatch
on every store

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDREW_FROM_ACCOUNT:	
	 	 	 	 	 	 balance	 -‐=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 case	 Actions.DEPOSITED_INTO_ACCOUNT:	
	 	 	 	 	 	 balance	 +=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

When we withdraw money, we decrement

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDREW_FROM_ACCOUNT:	
	 	 	 	 	 	 balance	 -‐=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 case	 Actions.DEPOSITED_INTO_ACCOUNT:	
	 	 	 	 	 	 balance	 +=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

And when we deposit money we increment

After this method, the store emits a change, and the view re-renders

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 ...	
}	

function	 getBalance()	 {	
	 	 return	 balance;	
}

We also need to get the data out
The view layer would call getBalance when it renders

Stores are not
observable objects

At least not in the way we generally think of them
It's tempting to think of stores as just models that live outside of your view hierarchy
but stores do not behave like the traditional models that we think of (O.o)
How so?

model.balance	

store.getBalance()

We have getters, true

Object.observe(model,	 changes	 =>	 {	
	 	 //	 update	 the	 view	
});	

store.subscribe(()	 =>	 {	
	 	 //	 re-‐render	 the	 app	
});

And we can subscribe to changes, so that’s not too different

model.balance	 =	 oneMillionDollars;	

//	 ...	 ?

But there’s no equivalent for a setter
You can’t call up your bank and tell them that your balance is now one million dollars
Stores update in response to actions, but there’s no way to update just one value,
or just one store
ACTIONS become the ONLY WAY to MODIFY our state
There’s an important result of this fact

Stores are a function of the actions
fired on them

f(state,	 [...actions])	 →	 newState

Given a set state, the transition to another state given a set of actions is deterministic.
If I fire the same sequence of actions in my app, I will end up with the exact same state
Source of truth is actually the stream of events
Stores are a “cache”
This is a reduce, the stores are accumulators

But bank transactions
are async…

We need to take care to not accidentally mutate state without an action though

My previous example wasn’t complete.
We have to request a transaction

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDRAWAL_REQUESTED:	
	 	 	 	 	 	 requestWithdrawal(
	 	 	 	 	 	 	 	 action.data.accountId,	
	 	 	 	 	 	 	 	 action.data.amount	
).then(
	 	 	 	 	 	 	 	 res	 =>	 balance	 -‐=	 res.amount;	
);	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

A first attempt might look like this

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDRAWAL_REQUESTED:	
	 	 	 	 	 	 requestWithdrawal(
	 	 	 	 	 	 	 	 action.data.accountId,	
	 	 	 	 	 	 	 	 action.data.amount	
).then(
	 	 	 	 	 	 	 	 res	 =>	 balance	 -‐=	 res.amount;	
);	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
} New Action

Make a request, and when the response comes back, update the value
The store updates with the correct value
and the view will render correctly

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDRAWAL_REQUESTED:	
	 	 	 	 	 	 requestWithdrawal(
	 	 	 	 	 	 	 	 action.data.accountId,	
	 	 	 	 	 	 	 	 action.data.amount	
).then(
	 	 	 	 	 	 	 	 res	 =>	 balance	 -‐=	 res.amount;	
);	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
} But now there is a mutation of our data that’s not in this stream of actions

If we re-apply our actions we end up in a different state
If something else needed to know about the withdrawal, now it can’t
Harder to reason about our app

Async operations
need to fire actions

The way around this is to always fire actions at the end of an async req

function	 requestWithdrawal(account,	 amount)	 {	
	 	 requestWithdrawal(account,	 amount)	
	 	 	 	 .done(
	 	 	 	 	 	 res	 =>	 dispatch({	
	 	 	 	 	 	 	 	 type:	 Actions.WITHDREW_FROM_ACCOUNT,	
	 	 	 	 	 	 	 	 data:	 {	 ...	 }	
	 	 	 	 	 	 }),	
	 	 	 	 	 	 err	 =>	 dispatch({	
	 	 	 	 	 	 	 	 type:	 Actions.WITHDRAWAL_FAILED,	
	 	 	 	 	 	 	 	 data:	 {	 ...	 }	
	 	 	 	 	 	 });	
);	
}

You might do it this way, outside of the store

function	 requestWithdrawal(account,	 amount)	 {	
	 	 requestWithdrawal(account,	 amount)	
	 	 	 	 .done(
	 	 	 	 	 	 res	 =>	 dispatch({	
	 	 	 	 	 	 	 	 type:	 Actions.WITHDREW_FROM_ACCOUNT,	
	 	 	 	 	 	 	 	 data:	 {	 ...	 }	
	 	 	 	 	 	 }),	
	 	 	 	 	 	 err	 =>	 dispatch({	
	 	 	 	 	 	 	 	 type:	 Actions.WITHDRAWAL_FAILED,	
	 	 	 	 	 	 	 	 data:	 {	 ...	 }	
	 	 	 	 	 	 });	
);	
}

If the request succeeds, we fire the action from earlier

function	 requestWithdrawal(account,	 amount)	 {	
	 	 requestWithdrawal(account,	 amount)	
	 	 	 	 .done(
	 	 	 	 	 	 res	 =>	 dispatch({	
	 	 	 	 	 	 	 	 type:	 Actions.WITHDREW_FROM_ACCOUNT,	
	 	 	 	 	 	 	 	 data:	 {	 ...	 }	
	 	 	 	 	 	 }),	
	 	 	 	 	 	 err	 =>	 dispatch({	
	 	 	 	 	 	 	 	 type:	 Actions.WITHDRAWAL_FAILED,	
	 	 	 	 	 	 	 	 data:	 {	 ...	 }	
	 	 	 	 	 	 });	
);	
}

If it fails, something else will want to know

Stores are a way of
asking a question

Stores are a convenience
Given list of all transactions that I’ve ever made, can I afford to buy lunch?
This is what we used to have to do balancing a checkbook (ask your parents)
We decide what stores to have based on what questions we want to ask

Let’s ask a new
question

Account balance is probably not the only question we’ll need to ask of this data
In large systems many different subsystems may need to know about what’s happening
Because every action is passed to every store we create more stores

Let’s ask a new
question

Your withdrawal has failed

So your designer wants the app to notify the user when a withdrawal has failed

{	
	 	 type:	 Actions.SHOW_NOTIFICATION,	
	 	 data:	 {	
	 	 	 	 message:	 "Your	 withdrawal	 has	 failed",	
	 	 	 	 ...	
	 	 }	
}

At first we might consider doing this

{	
	 	 type:	 Actions.SHOW_NOTIFICATION,	
	 	 data:	 {	
	 	 	 	 message:	 "Your	 withdrawal	 has	 failed",	
	 	 	 	 ...	
	 	 }	
}

But this isn’t a good action
SHOW_NOTIFICATION is a command, not “something that happened”
Now, I have to sprinkle this action all around the application
We’re trying to get around the lack of a setter and talk to a particular store

Actions are not
elaborate setters

- Actions are like newspapers

want to implement like this

let	 messages	 =	 [];	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDRAWAL_FAILED:	
	 	 	 	 	 	 messages.push("Your	 withdrawal	 has	 failed");	
	 	 	 	 	 	 break;	
	 	 	 	 case	 Actions.NOTIFICATION_DISMISSED:	
	 	 	 	 	 	 messages	 =	 [];	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

Our view layer simply renders a notification for each value in messages
Empty -> no notification
When a withdrawal fails, messages now has a value
view re-renders

let	 messages	 =	 [];	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDRAWAL_FAILED:	
	 	 	 	 	 	 messages.push("Your	 withdrawal	 has	 failed");	
	 	 	 	 	 	 break;	
	 	 	 	 case	 Actions.NOTIFICATION_DISMISSED:	
	 	 	 	 	 	 messages	 =	 [];	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

Your withdrawal has failed

and we have a notification,
when the user interacts with the view or a time limit is reached
the dismiss action is fired and it’s not longer rendered
Maintain separation of concerns.
The code firing the action has no idea the notification system is listening.

Actions are the
change in your app

Actions represent mutations of your app state
Explicit, easy to find the places that could trigger a particular action, I can search for it

Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	
Actions.USER_UPDATED_PHONE_NUMBER	
Actions.WITHDRAWAL_REQUESTED	
Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	
Actions.USER_UPDATED_PHONE_NUMBER	
Actions.WITHDRAWAL_REQUESTED	
Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	
Actions.USER_UPDATED_PHONE_NUMBER	
Actions.WITHDRAWAL_REQUESTED	
Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	

our app looks like this when it’s running
every action passes through the dispatcher
can log them all out
I use this at work to understand new sections of the UI that I haven’t worked on before

let	 balance	 =	 0;	

function	 onDispatch(action)	 {	
	 	 switch	 (action.type)	 {	
	 	 	 	 case	 Actions.WITHDREW_FROM_ACCOUNT:	
	 	 	 	 	 	 balance	 -‐=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 case	 Actions.DEPOSITED_INTO_ACCOUNT:	
	 	 	 	 	 	 balance	 +=	 action.data.amount;	
	 	 	 	 	 	 break;	
	 	 	 	 ...	
	 	 }	
}

When looking at a store the actions that can modify it are explicit
This is the exhaustive list
This helps narrow the scope of what I need to understand in a large system,
especially if we keep the stores small
Make changes with confidence
This allows us to keep moving fast, even as our systems get large

Those who forget the
past…

So here’s where I try to justify the title

Account	 Balance:	 -‐$10

You open your bank account and see that you now have -10 dollars as your balance
WHAT HAPPENED?
A user sends you a screenshot of your app in a weird state: I HAVE A BUG
This is the same situation
Repro please

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Deposit $100 $250

$250
If this is our bank account we have a history to look at
If this is our app, we are missing most of this data

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Deposit $100 $250

-$10

We’re trying to debug using only the final value and our knowledge of the system

Bank Account
Transaction Amount Balance

Create Account $0 $0

Deposit $200 $200

Withdrawal ($50) $150

Withdrawal ($160) $250

-$10

This is what we really want

Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	
Actions.USER_UPDATED_PHONE_NUMBER	
Actions.WITHDRAWAL_REQUESTED	
Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	
Actions.USER_UPDATED_PHONE_NUMBER	
Actions.WITHDRAWAL_REQUESTED	
Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	
Actions.USER_UPDATED_PHONE_NUMBER	
Actions.WITHDRAWAL_REQUESTED	
Actions.WITHDRAWAL_FAILED	
Actions.DEPOSIT_REQUESTED	
Actions.DEPOSITED_INTO_ACCOUNT	
Actions.USER_CHANGED_PASSWORD	

But we have exactly that! We just need to save them off

At Facebook we did that for one of our flux apps
When an employee filed a bug, they could choose to send off
all of the actions that happened that session

f(state,	 [...actions])	 →	 newState

Because of this property, not only can I see how they got there
I can literally re-play their actions and see exactly what they saw
every intermediate step

Those who forget the
past are doomed to
debug it

But we can only do this because we make our mutations explicit and keep a history
So the next time someone sends you a screenshot of your app in a weird state…

¡Gracias!

